2021 Kooperationsprojekt

3D-gedruckte Hohlleiterverbindungstechnik und konforme Antennen für Automobilradaranwendungen

Die Leistungsfähigkeit moderner Radarsensoren für das autonome Fahren wird u. a. durch die Fertigungstechnik eingeschränkt. Insbesondere die Photolithographie begrenzt die Gestaltungsfreiheit auf lediglich planare (2D) Strukturen. Damit geht auch die Einschränkung bei der Optimierung der Radarsensoren hinsichtlich ihrer wesentlichen Parameter Reichweite, Winkelauflösung und Sichtfeld einher.

links: Additiv gefertigter Übergang zwischen differentieller Mikrostreifenleitung (Leiterplatte) und Hohlleitersystem entsprechend (Quelle: Friedrich-Alexander-Universität Erlangen Nürnberg, Lehrstuhl für Hochfrequenztechnik (LHFT)) rechts: Zusammensetzung von Hohlleiterschlitz- und Hornantennen mit unterschiedlichen Aperturabmessungen für verschiedene Abstrahleigenschaften (Quelle: Friedrich-Alexander-Universität Erlangen Nürnberg, Lehrstuhl für Hochfrequenztechnik (LHFT))

In diesem Kontext werden im Projekt 3D-konforme additive Fertigungsverfahren eingesetzt, um die genannten fertigungstechnischen Einschränkungen zu überwinden und damit die Leistungsfähigkeit von Radarsensoren insbesondere hinsichtlich ihres Sichtfelds zu steigern.

Die Verwendung geschlitzter Hohlleiter soll die Dämpfung im Speisenetzwerk verringern und damit die Reichweite erhöhen. Zusätzlich kann damit teures HF-Leiterplattenmaterial eingespart werden.
Durch die Implementierung räumlicher Antennenarchitekturen wird direkter Einfluss auf das Sichtfeld einzelner Antennenelemente genommen, deren konforme Anordnung auf beliebig geformten Oberflächen wiederum das Sichtfeld des gesamten Sensors erweitern kann.

Im Forschungsprojekt konnten breitbandige Übergänge zur nahezu unmittelbaren Einspeisung von HF-Signalen von integrierter Schaltung zum gedruckten Hohlleitersystem demonstriert werden.
Mittels einer neuen Zusammenführung von Hohlleiterschlitz- und Hornantenne wurde ein Antennenkonzept mit hoher Strahlungseffizienz mittels 3D-Druck umgesetzt. So wird es ermöglicht, Antennengewinn (Reichweite) gegen Sichtfeld nach Belieben auszutauschen. Mittels konformer Anordnung dieser Antennen können beispielsweise unterschiedliche Betriebsmodi, wie z. B. Lane-Change-Assistent und Blindspot-Detection, in einem System implementiert werden.

Projektfinder
.
Forschungsverbünde

In strategisch wichtigen Bereichen werden von der Forschungs­stiftung auch Forschungs­verbünde initiiert und gefördert.

.
Projektleitung
Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Hochfrequenztechnik
Projektpartner
NXP Semiconductors Deutschland GmbH